浪涌沖擊形成的原理
電磁兼容領域所指的浪涌沖擊一般來源于開關瞬態和雷擊瞬態。
開關瞬態 系統開關瞬態與以下內容有關:
a)主電源系統切換騷擾,例如電容器組的切換;
b)配電系統內在儀器附近的輕微開關動作或者負荷變化;
c)與開關裝置有關的諧振電路,如晶閘管;
d)各種系統故障,例如對設備組接地系統的短路和電弧故障。
雷擊瞬態 雷電產生浪涌(沖擊)電壓的主要原理如下:
a)直接雷擊于外部電路(戶外) ,注入的大電流流過接地電阻或外部電路阻抗而產生電壓;
b)在建筑物內、外導體上產生感應電壓和電流的間接雷擊(即云層之間或云層中的雷擊或擊于附 近物體的雷擊,這種雷擊產生的磁場) ;
c)附近直接對地放電地雷電入地電流耦合到設備組接地系統的公共接地路徑。 當保護裝置動作時,電壓和電流可能發生迅速變化,并可能耦合到內部電路。
浪涌沖擊測試及相關要求
不同的電子、電氣產品標準對浪涌(沖擊)抗擾度試驗的要求是不同的,但這些標準關于浪涌(沖 擊)抗擾度試驗大多都直接或間接引用 GB/T17626.5-1999 ( IEC 61000-4-5:1995):《電磁兼容 試驗和測 量技術 浪涌(沖擊)抗擾度試驗》這一國家電磁兼容基礎標準,并按其中的試驗方法進行試驗。下面 就簡要介紹一下該標準的內容、試驗方法及相關要求。
適用范圍:
適用于電氣和電子設備在規定的工作狀態下工作時, 對由開關或雷電作用所產生的有一定危害電平 的浪涌(沖擊)電壓的反應。 該標準不對絕緣物耐高壓的能力進行試驗。該標準不考慮直擊雷。
試驗內容:
對電氣和電子設備的供電電源端口、信號和控制端口在受到浪涌(沖擊)干擾時的性能進行評定。
試驗目的:
評定設備在遭受到來自電力線和互連線上高能量浪涌(沖擊)騷擾時產品的性能。
試驗發生器(雷擊浪涌發生器)
a)信號發生器的特性應盡可能地模擬開關瞬態和雷擊瞬態現象;
b)如果干擾源與受試設備的端口在同一線路中,例如在電源網絡中(直接耦合),那么信號發生器 在受試設備的端口能夠模擬一個低阻抗源;
c)如果干擾源與受試設備的端口不在同一線路中(間接耦合),那么信號發生器能夠模擬一個高阻抗源。 對于不同場合使用的產品及產品的不同端口,由于相應的浪涌(沖擊)瞬態波形,各不相同,因此 對應的模擬信號發生器的參數也各不相同。
例如:對交流電源端口,通常采用的是 1.2/50μs (8/20μs)組合波信號發生器;對電信端口,通常采用 的是 10/700μ s 的符合 CCITT要求的試驗信號發生器。浪涌(沖擊)波形見上圖所示。
試驗方法
浪涌(沖擊)測試一般應在線進行。測試時,應根據不同的端口選擇對應的波形發生器和相應的耦合 /去耦單元,同時也應注意不同狀 態下的信號源內阻選擇。
4.4.2.6 試驗等級及其選擇:
等級 | 開路試驗電壓(± 10%),kV |
1 | 0.5 |
2 | 1.0 |
3 | 2.0 |
4 | 4.0 |
X | 特定 |
注: X 是一個開放等級,可以在產品要求中加以規定。 |
試驗等級應根據安裝情況來選擇。對較高等級測試時,試驗應滿足該表所列的較低等級。對具體的產品來說,試驗等級選擇往往已在相應的產品或產品族標準中加以規定。
試驗環境
該標準規定的環境條件:
環境溫度: 15℃~35℃
相對濕度: 10%~75%RH
大氣壓力: 86kPa~106kPa
試驗布置
下圖是交 /直流電源端浪涌(沖擊)差模和共模試驗配置示意圖。
試驗實施
電源、信號和其他功能電量應在其額定的范圍內使用,并處于正常的工作狀態。 根據要進行試驗的 EUT 的端口類型選擇相應的試驗試驗波形發生器和耦合單元及相應的信號源內 阻。使受試設備處于典型工作條件下,根據受試設備端口及其組合,依次對各端口施加沖擊電壓。每種組合應針對不同脈沖極性進行測試,兩次脈沖間隔時間不少于 1min。 對電源端子進行浪涌測試時,應在交流電壓波形的正、負峰值和過零點分別施加試驗電壓。 對電源線和信號線應分別在不同組合的共模和差模狀態下施加脈沖沖擊。 每種組合狀態至少進行 5 次脈沖沖擊。 若需滿足較高等級的測試要求, 也應同時進行較低等級的測試, 只有兩者同時滿足, 我們才認為測 試通過。 不同的產品或產品族標準對試驗的實施可能根據產品的特點有特定的規定。
試驗結果
若電快速速變脈沖群測試通不過,可能產生如下后果:
( 1)引起接口電路器件的擊穿損壞。
( 2)造成設備的誤動作。
導致浪涌沖擊抗擾度試驗失敗的原因
浪涌脈沖的上升時間較長,脈寬較寬,不含有較高的頻率成分,因此對電路的干擾以傳導為主。主要體現在過高的差模電壓幅度導致輸入器件擊穿損壞, 或者過高的共模電壓導致線路與地之間的絕緣層 擊穿。由于器件擊穿后阻抗很低,雷擊浪涌發生器產生的很大的電流隨之使器件過熱發生損壞。
對于有較大平滑電容的整流電路,過電流使器件損壞也可能是首先發生的。例如,對開關電源的高 壓整流濾波電路而言,浪涌到來時,整流電路和平滑電容提供了很低的阻抗,浪涌發生器輸出的很大的 電流流過整流二極管,當整流二極管不能承受這個電流時,就發生過熱而燒毀。隨著電容的充電,電容 上的電壓也會達到很高,有可能導致電容擊穿損壞。
通過浪涌抗擾度試驗應采取的措施
雷擊浪涌試驗有共模和差模兩種,因此浪涌吸收器件的使用要考慮到與試驗的對應情況。為保證使 用效果,浪涌吸收器件要用在進線入口處。由于浪涌吸收過程中的 di/dt 特別大,在器件附近不能有信 號線和電源線經過,以防止因電磁耦合將干擾引入信號和電源線路。此外,浪涌吸收器件的引腳要短; 吸收器件的吸收容量要與浪涌電壓和電流的試驗等級相匹配。
雷擊浪涌試驗的最大特點是能量特別大,所以采用普通濾波器和鐵氧體磁芯來濾波、吸收的方案基 本無效,必須使用氣體放電管、壓敏電阻、硅瞬變電壓吸收二極管和半導體放電管等專門的浪涌抑制器件才行。
浪涌抑制器件的一個共同特性就是阻抗在有浪涌電壓與沒浪涌電壓時不同。正常電壓下,它的阻抗很高,對電路的工作沒有影響,當有很高的浪涌電壓加在它上面時,它的阻抗變得很低,將浪涌能量旁 路掉這類器件的使用方法是并聯在線路與參考地之間,當浪涌電壓出現時,迅速導通,以將電壓幅度限 制在一定的值上。
壓敏電阻、瞬態抑制二極管和氣體放電管具有不同的伏安特性, 因此浪涌通過它們時發生的變化不同,下圖對浪涌通過這三種器件時的變化進行了比較。
壓敏電阻
當壓敏電阻上的電壓超過一定幅度時,電阻的阻值大幅度降低,從而浪涌能量泄放掉。 在浪涌電壓 作用下,導通后的壓敏電阻上的電壓(一般稱為鉗位電壓),等于流過壓敏電阻的電流乘以壓敏電阻的 阻值,因此在浪涌電流的峰值處鉗位電壓達到最高。
( 1)優點:峰值電流承受能力較大,價格低。
( 2)缺點:鉗位電壓較高(取決于最大浪涌電流),一般可以達到工作電壓的 2~ 3 倍,因此電路 必須能承受這么高的浪涌電壓。另外,壓敏電阻隨著受到浪涌沖擊次數的增加,漏電流增加。如果在交 流電源線上應用會導致漏電流超過安全規定的現象,嚴重時,壓敏電阻會因過熱而爆炸。壓敏電阻的其 他缺點還有:響應時間較長,寄生電容較大。
( 3)適用場合:直流電源線、低頻信號線,或者與氣體放電管串聯起來用在交流電源線上。
瞬態抑制二極管( TVS )
當TVS上的電壓超過一定幅度時,器件迅速導通,從而將浪涌能量泄放掉。由于這類器件導通后 阻抗很小,因此它的鉗位電壓很平坦,并且很接近工作電壓。
( 1)優點:響應時間短,鉗位電壓低(相對于工作電壓) 。
( 2)缺點:由于所有功率都耗散在二極管的 PN 結上,因此它所承受的功率值較小,允許流過的 電流較小。一般的 TVS 器件的寄生電容較大,如在高速數據線上使用,要用特制的低電容器件,但是 低電容器件的額定功率往往較小。
( 3)適用場合:浪涌能量較小的場合。如果浪涌能量較大,要與其他大功率浪涌抑制器件一同使 用, TVS 作為后級防護。
氣體放電管
當氣體放電管上的電壓超過一定幅度時,器件變為短路狀態,阻抗幾乎為零。這種導通原理與控制電感性負載的開關觸點被擊穿的原理相同,只是這里兩個觸點之間的距離和氣體環境是控制好的,可使 擊穿電壓為一個確定值。氣體放電管一旦導通后,它上面的電壓會很低。
( 1)優點:承受電流大,寄生電容小。
( 2)缺點:響應時間長。另外,由于維持它導通所需要的電壓很低,因此當浪涌電壓過后,只要 加在氣體放電管上的電壓高于維持電壓, 它就會保持導通, 在交流場合應用時, 只有當交流電過零點時, 它才會斷開,因此會有一定的慣用電流。由于跟隨電流的時間較長,會導致放電管觸點迅速燒毀,從而 縮短放電管的壽命。
( 3)適用場合:信號線或工作電壓低于導通維持電壓的直流電源線上(一般低于 10V);與壓敏電阻組合起來用在交流電源線上。
氣體放電管和壓敏電阻組合應用
氣體放電管和壓敏電阻都不適合單獨在交流電源線上使用。
氣體放電管的問題是它的電流效應。 壓 敏電阻的問題是隨著受浪涌作用的次數增加交流漏電流增加。 一個實用的方案是將氣體放電管與壓敏電 阻串聯起來使用。 如果同時敏電阻上并聯一個電容,浪涌電壓到來時, 可以更快地將電壓加到氣體放電 管上,縮短導通時間。 這種氣體放電管與壓敏電阻的組合除了可以避免上述缺點以外, 還有一個好處就是可以降低限幅電 壓值。在這里可以使用導通電壓較低(低于工作電壓)的壓敏電阻。從而可以降低限幅電壓值。 該連接方式對浪涌電壓的抑制作用如圖所示。
浪涌經過壓敏電阻和氣體放電管后,會殘留一個較窄的脈沖,這是由于氣體放電管導通點較高所致。由于這個脈沖較窄,因此很容易用低通濾波器濾除。實用的浪涌防護電路是在浪涌抑制器的后面加低通 濾波器。
地線反彈的抑制
當并聯型的浪涌抑制器發揮作用時,它將浪涌能量旁路到地線上。由于地線都是有一定阻的,因此,當電流流過地線時,地線上會有電壓。這種現象一般稱為地線反彈。地線反彈對設備的影響如下:
( 1)浪涌抑制器的地與設備的地不在同一點,設備的線路實際上沒有受到保護,較高的浪源電壓 仍然加到了設備的電源線與地之間。 解決辦法是在線路與設備的外殼 (地)之間再并聯一只浪涌抑制器。
( 2)浪涌抑制器的地與設備的地在同一點,這時,該臺設備的線路與地之間沒有浪涌電壓,受到了保護,但是如果這個設備與其他設備連接在一起,另一臺設備就要承受共模電壓。這個共模電壓會出現在所有連接設備1與設備2的電纜上。解決的方法是在互連電纜的設備2一端安裝浪涌抑制器。
浪涌抑制器件的正確使用
需要注意的是,浪涌抑制器件的壽命總會失效。因此,在結構設計上,應該便于更換 浪涌抑制器件。并且,當浪涌抑制器件失效時,應該有明顯的顯示,提醒維護人員進行更換。浪涌抑制器件的失效模式一般為短路,這可以稱為安全模式。因為當浪涌抑制器短路時,線路會出現故障,從而 提醒維修人員更換浪涌抑制器。但是,也有開路失效模式的可能性,這時往往會給設備帶來潛在危險,因為設備會直接處于沒有保護的狀態下。
推薦型號:
雷擊/浪涌發生器
CWG 520: 3x400V / 16A
CWG 1500: 1.2/50 μs_8/20μs / 4.4kV
CWG 2500: 1.2/50 μs_8/20μs / 4.4kV / 觸摸屏
Schl?der施羅德授權代理商:蘇州威銳科電子有限公司
微信掃一掃